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BCCHNER'S THEOREM IN INFINITE DIMENSIONS

1, Introduction

Let G be a2 locally compact sbelian group. A well-known theorem

of Bochner ([1], [2]) states that a mapping ¥ of G ‘into C is positive
definite and continuous if and only if there is a unique nonnegative finite
regular Borel measure m, on G (the dual group of G) such that y(g) =
fa(}",g)dm¢r where (v,g) denotes the action of the character y on g.
An alternate version of the theorem ([3]) states that if A 1is a semi-
simple, self-adjoint, commutative Banach algebra and ¢ is a liuear func-
tional on A, then ¥ 1is positive and extendable if and only if there is a
finite positive Baire meazsure Yy on _& {the maximal ideal space of A)
such that V(a) =.£€5(M)de where & 1s the Gelfand transform of o € A.
Here we shall extend these theorems tb mappings taking values in a Banach
space X. Our results generalize the extension of Bochner's theorem made
in {4].

We shall, in faet, first prove that if A 1is a self-adjoint,

commutative Banach algebra and v 1is a linear map of A into the Banach

space X, then ¥ is positive® and "almost" extendable if and only if
there is a wéakf*-regular, finite, positive set function v;* ?apping
Z{#) (the Borel field of _#) into X** such that () = .'[l &(M)dv‘z*
(where v(a) is viewed as an element of X*), ‘We next show that if the
mapping ¥ of & into X given by ¥(&) = ¥(a) is weakly compact++,l

then v;* can be viewed as e weakly regular positive vector measure v

*Pbsitiviﬁy is with respect to a suitable cone in  X.

++This means that. 3 maps bounded sets_in A into weekly compact sets in X,
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mapping X{ #) into X and, conversely, if (&) = £€ &(M)de where Yy

is a weakly regular positive vector measure on EIAZ) to X, then V¢ is
positive and "almost" extendable and v is weakly compact, In the case where
A= Ll(G,C), these results lead to a representation of V¥ by an element D,
of L (G,X) i.e. ¥(a) = qu(g)pw(g)du where u 1is the Haar measure on G.
We then develop an extended Bochner's theorem for maps p in qm(G,X).
Finally, we use some particular Banach spaces to illustrate the theory,

The general results obtained here are combined with the transform

theory on Ll(G,X) to develop‘an inversion theorem end a Plancherel theorem
vin [5]. These theorems are-also applied to the solutipn of conveolution equa-
tions in Hilbert cpaces in [5]. The convblution equations arise in the study
of problems relating to the stability and control of systems described by

parabolic partial differential equations,

2. Positive Functibns

Let X be a Banach space and 1et_ X* and X** be the dual spaces
of X and X¥, respectively. If ¢ 1is an element of X*, then the opera-
tion of @ on x 1is denoted by (x,9). The notion of positivity that we
use is based on a cone of "positive" elements containea in X. -‘We assume
that the cone is defined by = famiiy of elemeﬁts of X*. More precisely, we

have

DEFINITION 2.1. Let & Dbe a subset of X*. The subset K, (or simply X .

when @ is fixed by the context) of X given by

(2.2) Ko = {x e Xs (x,0) 20 for all @ in ¢}
- W i
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}_5 ¢called the cone determined ‘9_{ P,

Now let A be a Banach algebra with an involution given by o -» o,

@ € A, and let ¥ be a linear mapping of A into X. We then have

DEFINITION 2.3. The mapping V 1._13_ positive with respect to the core KQ

(or ¢-positive) if ¥(ao¥) € Ky for all o in A.

We observe that ¢ 1s ¢@-positive if and only if the mappings
(¥(-*,9) of A into C are positive functionals for all ¢ in &, Note
also that 1f ¢ is ¢-positive, then, for any @ in ¢, the functional

Bcp(a,B) given by

(2.4) - By(ayR) = (¥(ep,9)

is a symmetric bilinear form satisfying the Cauchy inequality
2

(2.5) |By(,8)1” 5 Bo(a,)Bi(8,8)

for a,p in A,

DEFINITION 2.6. The mapping ¢ is symmefric with respect to ¢ (_o_r simply

symmetric) if (¥(a),9) = (¥W(0F),») for all ¢ in & and o in A,
If A has a unit e, then every ¢-positive mapping is symmetric

since (¥(a),9) = (V(ce),p) = Bcp(a,e) = B_cp(e,a) = (¥(o¥),p) for all . If
A does not nave a unit, then A can be imbedded in an algebra A = A @ C

with a unit in a natural way. Letting e be the unit in K, we can extend




¥y to a linear mapping Tﬁx of A into X ‘by_setting ‘Jt‘x (a+ce) = :
o o i.
W(a)-l-cxo for a given x_ in X. Clesrly V¥ is symmetric if and only if :

(o d N §

wx is. We now have ) . :
[ ;

DEFINITION 2.7. A ®-positive mapping ¥ 1is almost extendable if (i) ¥ |

| {¥( o) ,)

for all ¢ in ¢ and o in A where d _:i_.gg_“constant with 4 2 1.

is symmetric, (ii) ¥ is continuous, and (iii) I(W(a),tp)lz s d||vlfie

DEFINITION 2.8, A ¢-positive mapping V¥ 'is extendable if ¢ is symmetric

and if there is an x_ in X such that |(¢(o¢),tp)|2 s (x,,9)(¥(oo*).0) for

——— am— o

el 9 in ¢ and o in A
If A has & unit e, then any ¢-positive mapping is extendable. -

If A does not have a unit, then we have

PROFPOSITION 2.9. A ib-Bg_sitive mapping ¢ 1is extendable if and only if

there is an extension V of ¥ to A which is O-positive,

Proof:  If R}' is & ¢-Jositive extension of ¢ and é is the unit in K,

then, letting x_ = ¥(e), ve deduce immedietely that |(¥(e),9)|2 = |(¥(2),0)|% =

(x°,¢)(f'5(oa*),q>) = (x,®)(¥(ca*),p) (by 2.5) and thet y is symuetric. |
On the other hand, if y is extendable, then let ¥(qtce) =

T, (asee) = y(a)sox. Since (V([aweel[ascels),0) = (¥(oo*),p)+2Re FA¥(a).0) +

ol 2(x,0), ve bave (([ascellascel*), ) 2 (W(a),9)-2|cll(K(0),0)] + o] X(x,,0) 2

'f(‘l'(on*),qa)_l/ 2. |c{(x°,q:)1/ 212 3 0 (as ¢ is extendable). Thus, ¥ is |

d-positive.

PROPOSITION 2.10. If there is an approximate identity [en} in A, then a

continuous @-positive ma.pping' y i._g_ a_._Jmost extendable.




Proofs Since (¥(a*),») = lim (V(eo*),0) = lim (Wae*),o) = (¥(a),9),
n —= oo n —»w

. . . 2
¥ is symmetric and, since |3@(en,a)| s qy(en,en)ﬁv(a,a) S ﬂw"ﬂwﬂﬁw(oga)

H

Hfllloll (v(or*),p), ¥ is almost extendable,

In order to prove the extension of Bochner's theorem, we require a
condition on the family @ defining the cone of "positive" elements, As we
shall see, the essential point is to deduce an estimate of the form th(cz)ﬁ2 5
K ¥(oo%)|| rom estimates of the form |(¥(@),®)|°  alelBvliwoe )l (v al-
most extendable) or "(W(cz),rp)l2 s "m“euxbuuw(an*)" (¥ extendable). The

following definition allows us to do this.

DEFINITION 2.11. The family ® is full if there isa p >0 such that

(2.12) Il s o sup (] (x,9)]/lell)
: : P €9

® £0

for all x in X%

We now have

LEMMA 2.13. If A has a unit e, if the involution on A is continuous, and

if ¢ 1is full, then every &-positive mapping ¢ is cont inuous and almost

extendable. ' : -

Proof: Suppose first that « 1s a Hermitian element of A with [of s 1.

1/2 2

The binomial series (1l-t) =1 "% - EQ‘T"-°° converges absolutely for
: 272,

*This could be replaced by the following: ® is full relative to y :f there

is a p >0 such that [|v(a)ll = p sup {|(¥(@),9)|/lloll} for all a in a.
P ed :

9FO




|t] s 1 and so the series e - 5 = g Tees CONVErges absolutely in A.

Since the involution is continuous, the sum B of this series is a Hermitiar
element of A with BB* = B- = e-q. It follows that (V(e-a),9) =
(v(BB*),p) 2 0 and hence, that (V¥(e),p) = (¥(a),p). Replacing o by -,
we have (vy(e),p) =z (Vv(-a),p). But (¥ (a),p) is real (since o is Hermitian)
and so |(¥(a),9)| = llelllv(e)l. since @ is full, flu(a)ll = ellv(e)l.

Now, if @ is any element of A, then a = %(a+a*) - %(i(a-a*)).
Since the involution is continuous, there is a ¢ >0 such that |jo*| =
cdlofl and so, if |lofl = 2/c+l, then |[(a+at)/2l £ 1 end |li(a-o*)/2|| = 1.
It follows that llw(a)lia s 20o||v(e)|| for all @ in A with [of| s 2/c+l.
Thus, ¥ 1is bounded and therefore continuous.

since | (¥(),®)1% 5 (¥(e),@)(¥{ax),0) = |¥llllol (¥(aor),@), v is
almost extendable. |

COROLLARY 2.1L, If the involution on A is continuous, if ¢ is full, and

if ¥ is @-positive and extendable, then ¥ is continuous and almost ex-

tendable,

Proofs Apply proposition 2,9 and the lemma.

Let G be a g-finite locally compact abelian group and let A =
L,(G,C). The involution on L,(G,C) is given by o*(g) = @(-g) and is con-
tinuous since Ll(G,C) is semi-simple. Observe that if & is full and
is a ¢-positive mapping of Ll(G,C) into X, then V¥ 1is continuous and al-
most extendable if ¥ is extendable (corollary 2.1k) and conversely, ¥ is
almost extendable if V¥ 1is continuous (proposition 2,10).

Now let us introduce the following




DEFINITION 2.15 Let p be an element of L (G,X). The mapping p is ¢-

positive definite if

N N
(2.16) )X Zlanﬁ(p(gn-gm),Q) z 0
m=

n=1

for any integer N, any CirecesCy in C, any €ysree 8y in G, and all

9 in ©. The mapping p is integrally ¢-positive definite if

(2.17) ([of @ @)ole T p(g-g' ) andn,p) 2 0

fory @ in Ly(G,C) andall ¢ in O

We then have

FROPOSITION 2.18. Let p be 2 continuous element of L (G,X). Then p is

¢-positive gefinite if and only if p is integrally” 9-positive definite.

Proofs If p is Q-positive definite, then p is integrally ¢-positive
definite by a result of Naimark ([6], p. 397). Conversely, if p is inte-
grally «¢-positive definite,'then there 1s a continuous positive definite
functi;n f¢ mapping G into C sucﬁ that qv(g) = (p(g),p) locally al-
most everywhere on G ({61, p. 397) for each ¢ in ¢. Since (p(+),?)
is continuous, qp(-) = (p(*),p) everywhere and hence, p 1s ®-positive
definite, |

.Now'it is a fact that ¢ is a boun%ed weakly compact linear map
of LlﬁG,C) into X with separable range if and only if there is a p with

(essentially) weakly compact range in L (G,X) such that




(2,19) ¥(a) = [o(e)p(e)an

for all a in L,(G,C) ([9), p. 279, or [7], p. 507). Moreover, [y =
"P”,,,- The fact that the weakly compact maps in .f.(Ll(G,C),X) are essenti-
ally the same as the functions with (essentially) weakly compact range in
Lm(G,x) will allow us to relate the notion of ¢-positivity to the notions

of ¢-positive definiteness and integral ¢-positive definiteness,

LEMMA 2,20. Let ¢ be full. If v 1is & weakly compact linear mapping of

L,(G,C) into X which is ¢-positive and extendable, then there is an

(essentially unique) integrally &-positive p in L (G,X) such thet
(2.21) | v(a) = [.o(e)p(g)dn

for all « in Ll(G,C). Conversely, if p is an integrally &-positive

definite element of L (G,X) and v is given by 2.21, then ¢ is o-

Rositive and slmost extendable,

. Proofs Assume that ¢ is given. In view of [9], p. 279, the napping p

exists and we need only show that p is integrally ¢-pouitive definité.

But
(2.22) - W) = fof o e-g' )al-g")p(g)dudn = [ S ofe)ale) p( g-g' ) dudn

by virtue of the Fubini and Tonelli theorems and the invariance of Haar

measure. Conversely, given p, we simply note that y{oo*) 1is determined

Vo




by 2.22 in order to prove that ¥ is ¢-positive. Moreover, since V¢ 1is con-

tinuous, ¥ 1is almost extendable by proposition 2,10,

3. Bochner's Theorem for Algebras

Before proving the generalization of Bochner's theorem to maps of

A into X, we recall the following

DEFINITION 3.1. let S be a locally compact topological space and let X(S)

be the Borel field of S. A vector measure v is a weakly countably additive

set function taking values in X. The vector measure v is weakly regular

if the scalar measures (v(+),p) are regular+ for all @ in X*. The vector
measure v is O-positive if (v(E),9) 20 for all ¢ in ¢ and E in

2(8). A set function v** mapping 2(S) into X** is weak-*-regular if

(p,v**(+)) is a regular scaler meesure for all ¢ in X*, The set function

ve* is O-positive if (P,v**(E)) 20 for esl ¢ in ¢ and E in JX(S).

We now have

THEOREM 3.2, Let A be a self-adjoint commutative Banach algebra whose in-

volution satisfies the condition (9’) =8 (e.g. A semi-simple) and let @

be a full family., If V¥ is a mapping of A into X, then is O-positive

and almost extendable if and only if there is a set function v** mapping

X{A#) into X** such that (i) v** is weak-*-regular, (ii) v** is @-

positive, (iii) v** is finite i.e. [|v*||(#) < =, (iv) the mapping T e

* A scalar measure p is regular if given € >0 and E ¢ Z{(S) with
Il (E) < =, then there is a compact KC E and an open 02 E such that
lufl (0-%) < e.
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of X*¥ into the scalar measuses ci 4 given by Tv**(q)) = {(vex(+),0) is

continuous in the X and Co(j‘)'F topologies in these spaces respectively,

and (v)
(3.3) (¥0),0) = ,B(H)a(vis,0)

for ell o in A gndall ¢ in X

Proofs Suppose first that ¢ 1is ¢-positive and almost extendable. Then

¥ is continuous. Let § be the map of A into X given by V(&) = wa).
S N 2 2

Then [[W(&)] = ()l and |(¥(a),2)]” = dlvillloll (¥(aex),0) = dll Wil “l v(ax)l]

for all ¢ in & (since V¥ is almost extendatle). Since & is full, there

isa p >0 such that [¥(a)l| = o sup (| (Wa),?)|/ll®ll}. Thus, there is a
' P e

®£O
constant k (= pedllﬂ;") such that

(3.4) w()? = Wl w(ao)|

l-l'l/ 2 Il'/ 2

for all o in A. Tt follows thet [W(a)]|® = kl¥(a®)|| s x l¥(foed 2|

R - k2|1w|ﬂ|aq|i and hence, that § 1s a bounded linear map.

Since A 1is self-adjoint and commutative, A is dense in C (£)
and 'q; can, therefore, be extended to Co(j).; Let ﬁe denote the extensidn
of ¥ to _co( MA). We claim that there is a wea-k-*-»fegular set function

v an I 4) such that

1t A is cozpact, then Co(_l ) is the set of all continuous complex valued
functions on 4, If 4 is locally compact but not compact, then C_(A)
is the set of all continuous complei-c valued functions on _#& which "vanish

at infinity",




1l
(3.5) (V(£),0) = [, 2(4)a(v%,q)

for all f in CO(JZ) and @ in X,

To verify this claim, we let M(.#) be the space of all complex
valued regular measures W on & for which |d| is finite ([2])., Note
that C_(#)* = M(#) by the Riesz representation theorem. If E e XA,

then let T, be the element of CO(AZ)** defined by

(5.6) T,(1) = W(E), u & M(A)
Now define a set function v¥* of 2( ) into X¢* by setting
(3.7) vex(E) = Pae(Ty)

for E in ZKJK); We show that v¥¥ {is wyeak-*-regular, If @ is an ‘ele-

ment of_ X*, then @g(w} is, by the Riész representation theorem, a meés-_

are  H, in M(_&). But
(3.8) Ho(E) = Tplue) = Tp(PE(9)) = Ver(T)(0) = (v*+(E),9)

and so, the set function v** is weak;*-regular. Moreover, since $§(¢) =
(v¥%(:),p) by 3.8, the mappirg T .. satisties (iv). Also, (@e(f),m) =
'q}z(qa)(:) = [ﬁ f(M)dp.q) = M f(M)a(ve*,0) for f in C_(#) so that 3.3

is satisfied. It is easy to check that [[vex|(_#) ='H$e" ({71, p. 492)

and so, (1ii) is satisfies,
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All that remains to establish the first half of the theorem is to
prove that v¥* is ¢-positive, If f 41is an element of Co(/() with
f(M) 2 0 for all M, then fl/2 is in Co(_x{,’) and there is a sequence

(o) in A such thet limG_ = £7/2.  since (W) ,9) = Iy |8, ()| Za(vex ,9) ,

n -
it follows that if ¢ 1is an element of &, then 0 = (w(ancr’;l),cp) = ff lan(M)Igd(V'“*:fP)

and hence, by taking limits, that

(7.9) [, t()a(vex,p) 2 0

for all @ in ¢ and 211 f in _Co(_l) with f(*) 2 0. But (v*(+),p)
when restricted to the Baire sets in £ is a Baire measure, and as such , is
positive. The Baire measure can bé extended to a unigue ‘regular Borel meas-
ure ([9]) which must (by uniqueness) be (v**(-),p). It follows that w** .
is ¢-positive. |

Now suppose that v** jis given, Since the mepping | Tv** is con-
tinwous in the X and C O(_l ) tdpologies, the linear mapping @ -
If f(M)d(v**,p) is, for each fixed f in Co(_,l), continuous in the X-
topology of X* and is, therefore, generated by a.n element Xp of X.
is a

Thus, the wmapping ﬁe of Co( A) into X glven by ﬁ;e(f) = Xo

bounded linear map of Co( A) into X. If a 1is an element of A; then
let Wa) = ¥,(8). since [w(@)l = [V (@ s I lall, s 1T )all, v ise

continuous linear map. If ¢ is an element of ¢, then (V(ow#),9) =

Y |&(m)| a(v*,0) 2 0 ana (War),0) = J SMa(ver,9) = T EWA(#%,9) =
| NZQS',cpS" so.that V¥ 1is ¢@-positive. Also, |(¢(a),q:i)|2 s [Igla(M)lad(v**,qa)]



15

L, 12a(vex,0)1 5 (¥(aat),0) (ve (4),0) = v+ () Ioll(w(ace),0) <.
max{1, || v*{| (&) /Il i | villioli (¥{ao% ) ,p) so that ¥ is almost extendable.

COROLLARY 3.10., Let A Dbe a self-adjoint commutative Banach algebra with

(&) =5 and let ¢ be 2 full family., If ¥ is O-positive and almost

extendable and if v is weakly compact, then there _:’l_._s_ a weakly regular

¢-positive vector measure v on 2(4) such that

(3.11) | Wa) = .fl a(M)dv

for all a in A, Conversely, if v 1is a weakly regiular b-positive vec-

tor measure and is given by (3..11), then ¥ is @-positive and almost

extendable and '15 is weakly compact.

Proof: Suppose that V¢ is given. Since @ is weakly compact, 'q?e"' is
weakly compé.ct and éo, '\Fe**(co(j )*¥%) 1is contained in the natural imbedding
of X in X*, Thus, the set function w** given by 3.7 may be identified
with a mapping v of (&) into :x. In that case, (v(-),p) 1is an element
of M(#) for all @ ‘.m X*, It follows that v(+) is a weakly regular |
vector measure (as- v(-) is wéak.ly countably additive)., Clearly v is
.@_positive.q Moreover, since (ill(cx},q)).z .‘[l &(M)d(v,qa) = (th a(M)dv,p) for
all ¢ in X¢, 3.11 is satisfied. ; .

On the other hand, if v 1is given and ¥ is.defined by 3.11

(note that a(-) is bounded and continuous), then ¥ is d-positive and

*We use the notation of the proof of the theorem.

S T S T T T e

]
7



1k

almost extendable. In fact, W)l £ 8]V (4) s Nollv(e) ana | (¥, 9|2 -

(v(ao*),@)(v(g),») so that ¢ is extendable (xo = v(#) € X). Thus, to
complete the proof we need only show that @ is weakly compact.

Now, ¥ is clearly linear and, since N¥(&| = W)l = vl nlled] .,
a is continuous. Let @e be the mapping of CO(JZ) into X defined by
@e(f) = £¥ f(M)dv. Thus,.it will be enough to prove that ﬁe is weakly com-
p;ct.

"If ¢ 4is an element of X%, then @z(w) ; (v(+),p) 1is an element
of M(#). Since the set {(v(*),9)s § e %, |lo}l =1} is veakly sequentially
compact as a subset of the space of scalar mcasures and siace v 1s weakly
regular, @Z is a weakly compact mapping. It follows that @e is weakly

compact and the corollary is established.

COROLLARY 3.12. ;g‘rv satisfies the conditions of corollary 4,10 and v is

given by 5.11, then ¢ 1is extendable. Conversely, if v is extendable

(rather than almost extendable) and if the involution on A is continuous

(e.g. A semi-simple), then a v satisfying the conditions of corollary

3,10 exists (the other hypotheses of corollary 5.10 are, of course, aséumed)._

Proofs The first assertion was established in the course of the proof of

corollary 3.10. The second assertion is an immediate consequence of cor-

I

ollary 2,1k,

COROLIARY 3.13, If X is weakly complete, if A and ¢ satisfy the condi-

tions of corollary 5.10, and if V¥ 55 ®-positive ang almost extendable, then

% is weakly compact.

T 1" 1. e
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Proofs By the argument given in the proof of theorem 3.2, ¥ is a continuous
linear map., If A has a unite, then A is compact, Sinuce E is dense
in Co( M), ve may extend ¥ to a continuous linear map ﬁ:e of Co( H)
into X, As X 1is weakly complete, ﬁ}e is weakly .compact ([7], p. 4oh)
and a fortiori so is '\T;.' If A does not have a unit, then we extend A
to A=A0C. Letting %, be an element of X, we extend ‘IJ' to a mapping
¥ of X into X by setting V(a+ie) = \1!(0:)4’-)@.6 Then %(&Mé) = @(&)-&)\.xo

”~

is @ bounded linear map of A into X. It follows that V is weakly com-

o

pact and hence, that ﬁ} is weakly compacf:.

4, Bochner's Theorem on a Grbup

Let G be a O‘-fin:l.te 1ocally’compact abelian group and let A =
,,. L].(G'C)f The involution on A is given by o*(g) = o{-g) and is continuous.
Let X be 2 Banach space and let ¢ be a full family. We shall prove a
generalization of Bochﬁer's theoren for ..integrally d-positive definite .map-
pings p in 'LM(G,X) by combining lemms 2.20 with theorem 3,2 and its «or-
ollaries, We have |

THEOREM 4. 1. (A) If v is a weakly regular ®-positive vector measure de-

-

fined on %(G) (the Borel field of the dual = Zroup G) and if

(k.2) - | p(g) = fa'/r,g—'dv

then p 1is an inﬁeg ally &-positive definite element of Lw(G.,X).

(B) If p is an integrally O-positive definite element of

L (G,X), then there is a set function v** mag'pir;g Y(6) into X** such
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that (1) v¥* 1is weak-*-regular, 0-positive, and finite, (ii) the map T vx

given by Tv*-*(q)) = (v¢*(.),p) is continuous in the X topology of X*

and the C(G) topology of M(G), and (iii)

(k.3) o - (p(&),9) = Ja(v, e)a(vex,p)

for all ¢ in X* and (almost) all g in G.

Proof: (A) Let p(-) be given by 4.2. Suppose, for the moment, that p(-)
is measurable. Then p is in L (G,X) since [p(g)l| = Ivi(G) for all g.

Let V(o) = fGa(g)p(g)du for « in Ll(G,C). Then

(#),9) = { &) [T ETa(v,0)an
=[5/ e) (v, g)dnd(v,)

= [ a(v,9) = (Jaa(v)av,e)

for all @ in X* by the Fubini and Tomelli theorems. Since G and 4
can be identified ([2] or [3]), we have V¥(a) = .fl &(M)'dv (as v may be
viewed as a measure on ). But then (corollary 3.10) ¥ is ®-positive
and extendable (corollary 3.12). The result follows immediately from 2.22
of lemma 2.20. |

Thus, to complete the provf of (A), we neéd only show that p
is measurable. To do this it will be sufficient to show that, for any set
FCG with u(F) <=, PF(-) = XF()p(-) is the limit in measure of a
sequen;::e of simple functions where XF is the ch?.racteristic function of F.
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Since v is weakly regular, there is a finif,e, positive, regular
‘scalar measure A such that | vll(E) =0 if and onl& if A(E) » 0 where
IVI(E) is the semi-variation of v on E ([7]). Therefore, given 1§ >0,
there is a & >0 such that if )\.(@-K)"'.( g, then ||V|(G-X) < /4 for K
compact in G. éince A 1is finite and regular, there is a compact set

KC G for which A(&—K) < £ and hence for which II v[l(a-K) < n/4, Let

ny = n/2vl(¢) and let N(g;K,nl) = (g" € G: |1-(1,e')] < My T € K} +g.

Then N(g,K,nl) is an open neighborhood of g in G.

Now G 1is o—finite and so there is an increasing sequence of
sets G, with "‘u(Gn) <« and UG = G, Moreover, since Haar measure Iis
regular, given ¢ >0 there is a compact set L C G such that u(G-L ) <e.
The sets N{( g;K, T]l), g € Ln’ form an open cover of Ln' .Thus there are
gl,...,gMn in L, such that L C TlrJ:lN(gi;K,nl ) Let N‘i = N(gl;K,nl)

and Nni+l = N(gi+l;K,nl) ~ (N(gl;K,nl) V... U N(gi;K,nl)). Then L C

41

i=1l i n

p(g;) if g e N; and let pﬁ’n(-) be given by

N, and the union is disjoint, Let Pq ‘be defined on L, by pc(g) =

(4.4) p.’(g) = i

Then pfl’ T](-) is a simple function and we clsim that

(4.5) w*({g € G2 lIp(e)-p A&l >n)) <«

where u*(E)s i!Elf u(El), E,DE. For if g is in I, then ||p(g)--'7»i’ T'( gl =
. 1 -
*Here G-K is the complement of K.
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leCe)-p (Ml = Ml ey 1-(r g -) Jav)l = S5 (el 2-Ty e -e)lav]| +
e -Trg-elavl = 3 + nyllWl(G) = n (for some 1) so that (g ¢ G:

Hp(g)-pﬁ’”(g)H >n) CG-L . It follows that 4.5 holds. Let p(g) =

pi/n,x/n(g) so that P, is a simple function.

Now suppose that a is any positive number. We show that

(4.6) lim w*({g e F: [|p(g) ~ p(e)]| >a}) =0

n—w
for any FC G with p(F) < », So let € >0 be given. Then there is an
n_ 2 max(1/e,2/€) such that p(P 0 (c-G )) < €¢/2 for nz2 n. It follows

o)
that

A

w({eer: [p(g)-p ()l >a}) = ux({geF N G s lIp(e)-p () >a)) + /2

i

W (feeF N G: fp(e)-p ()l > 1/n}) + /2

A

1/n + ¢f2 5 ¢
~ ' . |
for n = no. In other words, p, converges to p in measure on F. The
proof of (A) is now complete,

(B) Let v(a) = fGa(g)p(g)du. Then ¢ is O@-positive and al-
most extendabie by lemma 2,20, It follows from theorem 3.2 that there is a

set function w* on' X(_#) such that (i) and (ii) are satisfied and

(%.7) (¥(a) ,9) = [y &(M)a(v+*,9)
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for all ¢ in X*, Since G and 4 can be identified, v** may be viewed

as a set function on 2(G) and

(1.8) (W@),®) = ol e)TT; B anla(ve,g)

for all @ in X¥, Application of the Fubini and Tonelli theorems then

ylelds

(%.9) I e)(p(e),@)du = (W(a),9) = [l e)a,(e)du

where Qp(g) = fair,g)d(v**,m). Since : .:i-),p) and qm(-) are in L _(G,C),
we have H(p(-),@)-q'p(-)ﬂ°° =0 for all ¢ in X*. In other words, 4.3

holds. The proof of (B) is now complete.

REMARK 4,10, Since ir;gi = (-7,g) and since the measure 1 (or the set

ey ESp— S————_——

function vi*) given by vl(E) = v(-E) (or vi*(E) = v¥¥(-E)) has the same

properties as v (or v**), p(g) is given by p(e) = [3(r,&)dv; (or sat-

isfles (p(g),p) = fa(r;g)d(vif,@)). [This agrees with convention in the

scalar case.)

We observe that if the hypotheses of (A) are satisfied and V(a) =
qu(g)p(g)du, then the mapping ¥ of A into X given by GQ&) = y(a) is .
weakly compact (COrollarf 3.10). Note also that if X is weakly complete
and p(+) 1is an integrally 0-positive definite element of IL_(G,X), then

”~

Vv 1is weakly compact. This leads to

COROLLARY 4.11. If X 4is weakly complete and if p is an integrelly ¢-

i

i
3
.
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positive definite element of Lw( G,X), then there is a weakly regular ¢-

positive vector measure v on (G) such that

(%.12) (p(e),@) = (J5(r,&)dv,o)

for 211 ¢ in X* and (almost) all g in G. If, in addition, & is count-

able, then

L]

(4.13) p(e) = [5(r,8)av

for (almost) all g in G.

Proof: The first assertion follows from corollary 3.12., On the other hand,
it 0 = (9} 1is countable, then there is a p-null set N such that
(p(g)-a(e),9) =0 for all @ in ¢ end g £N where q(g) = [3(r,e)dv.
But then lp(g)-a{&)ll = o sup (| (p(e)-a(e),@}|/loll} =0 for g fN. It

o f 0 |
follows immediately that ||p(-)-q(-){l =0, i.e. that 4,13 holds.

In order to state our 'final‘corollary we require

DEFINITION 4.1k, The element p of L (G,X) is dominated if there exists

& f_-nite regular positive Borel measure A . such that

(4.15) I/ (e)e(e)aul = [3l&(n)]an

for all a in Ll(G’C)’ where & is the Fourier transform of a.

i
]
j
!
!
i
:
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COROLLARY 4,16, Assume # is countable. Then p is a dominatea lntegrally

¢-positive definite element of L (G,X) if and only if there exists a

weakly regular ¢-positive vector measure v of finite variation mapping

2(8) into X such thsh

(4.17) pe) = lne)av.

Proofs We have only tolnote that there exists an isomorphism between the set
of weakly regular vector measures Vi Zxa) - X with finite variation and the
set of bounded linear operators Ti Co(@) —+ X for which there exists a finite
regular positive Borel measure A such that [|T(£)|| = alf(rjldx. This iso-
morphism is given by T(f) = fo(Tjdv, ({91, p. 380, or [11]). Now using
theorem 4,1 (B) we have, if we assume the existence of p, that (faf(r)dv,m) =
[gf(v)a(v++,@) for any f in co(a), ® in ¥*. But co(a)* = M(G), the
sﬁace of regﬁlar complex valued measures defined on ZX&) of finite varia-

tion, and (¢,v**), (v,p) are in M(G). Thus, for eny E in ZZE)Q(V(E),@) =

’W‘
N
2
-

(p,v**(E)). Consider v(E) as an element of X**, then v(E) = v¥*(E) and
SO vt is actually e measure. From the countability of ¢ we derive (4.17).°

The converse follows immediately from theorem L.1 (A).

5. Some Examples

-

We now give several examples'of spaces to which the theory applies.

EXAMPIE 5.1. Let X = Ll([O,I],C). Note that X is weakly complete., If
Z = 2([0,1]) is the Borel field on [0,1], then L is a separable metric

space with respect to the usual metric d(E,E') = w(E AB') where E AE!

B A PR S R L e
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(E-E') U (E'-E) 1is the symmetric difference of E and E'. Let [Ei] be
a countable dense set in 2 with Ey = [0,1]. Let X; be the characteristic

functim of Ei and let Py be the element of X* given by

(5.2) (x(*),95) = [3%,(s)x(s)as

If ¢ = {mi}, then K, 1is the cone of (essentially) nonnegative functions.
Note also that H@iﬂ s 1,

Now we claim that & is full. Set x'(s) = max(0,x(s)} and x7(s) =
max{0, -x(s)) fgr;}éal x in X. Then x(s) = x'(s) - x{s) and |x(g)| =
x+(s) + xf(s). Moreover, x* and x~ are nonnegative. Letting féxo(s)ds =

max[féx+(s)ds, féx-(s)ds} (i.e. xg = x* or x~ according to which integral

is greater), we see that
1
. s
(5.3) (), = 2f5x (s)ds

for real x in X. Now, suppose, for example, that X, ® x. Since x¥ is
measurable,'(x+)'1([0,m)) =E isin 2 and féxb(s)ds = fﬁxf(s)ds = fEx(s)ds.

as (E;) is dense in L, there is a sequence (E such that d(E; _,E) -0
’

i,n}

as n-wo, But |f x(s)ds-f x(s)ds| s | x(s)|ds end
5 , E By o AE .

lim [ | x(s)|dzs = 0 as p(E AE) 20 as n—w and x is in
n—)wEi,nAE I i,n

Ll([O,l],R). It follows that there is a sequence [mi’n] such that 1im (x,¢i,ﬁ)
) n = )
= féxb(s)ds and hence, that féxo(s)ds s sup | (x,9)]. Now choose any x in
| o .. T -

X. Then x = x, + ix, where xlﬂ-), x2(-) are real valued. But |lof| s 1

for ¢ in & and so,



st

| 5.4 xi|, = || £ 4 sup|(x, £ 4 sup( (%, )
G4 oy = gy + gy % % sl ()] £ & auot] (o)1

PO

for all x in X,

EXAMPIE 5.5. Let X = H be a separable Hilbert space. Fix an orthonormal

basis {e;} in H. If h e H, then h = hi+ih, where h, = X Re(< hye, de,

1

and h, = X Im( < hye; >}e;. An element h is real if h = hy. Let E, be

7
the set of all real elements h such that (i) {[bj| £ 1, (ii) b is positive
i.es <h,e; >20 for all i, (iii) h 1is rationsl i,e. < h,e; > is rational
for 211 1, and (iv) h is finite i,e, only a finite number of components

< h,ei > of h are not zero. Sinée H* can be identified with H, we

let © = H,. In other words, if ¢ ¢ Q, then (h,9) = < h,k > for some k

in Hb. The cone K@ is the set of all positive real elements of H.

We claim that ¢ is full, Suppose first that h = hl is resl,
+ - + -
Then hy =hy - h) where < h;,e; >=max{0, <hy,e; >} and <h,e >=

max(0,- < hy,e; >} for all i, Note that "hl"2 x “hIII2 + "hi“a. Let
+

k, be the element of H, with components < k;,ei > given by
- M ‘ry 18N .
(5.6) <K ey > =
' 0 i>N .

where N 1s chosen so that

o .' 2 1 g2
(5.7) T l<nl,e < )
N+l i >i 2:2 1

and r, 1is a nonnegative rational such that
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BN
ik
(5.8) <bte. >z rlnt] sk nte, >- -
17741 Ml (, 173 W
Lt
+ 1 + 4 +
Clearly [k - H_:H“< 1/n. It follows that (hi,k) -lh|l as n -,
h
1

Similarly, there is a rsquence k- in H ~such that (hi,k;) —aﬂhiﬂ as

n -, Noting that for any h = by +ih, in H, |(h,0)| 2 max(|(hy,9)|,

1
2 +y 2 -2 . + .2 . - =2
Kbyy@)l}, we bave (b [ = {|6]ll" + [nlll" = nlimm(.hl’kn) + nlimm(hl’ k) s
T (0%, 65| % + T (07,57) |2 5 2 sup | (h,,0)|%. Now, if h = h +ih, i
1ok 17K, = . 2@@ 1o®) . Now, 1 = hy+ih, is
any element of H, then [t = |ny2 + |ng® = 2 sup| (n,,0)|% +
2
2 supl(he,w)l £ 4 supl(h,w)la. Since ol =1 if ¢ € ¢ = H,, we deduce
P
that bl = 2 sup {|(h,9)|/ll9ll} for all h in H. Thus, ¢ is full.
‘p € ¢ :
9 £0O

EXAMPLE 5.9. Let H be a separable Hilbert space and let X = £(H,H) be
the space of bounded linear maps of H into itself, ILet Hb be a count-
able dense subset of the closed unit b2ll in H and let & = (@ € X*:

(T,#) = < Tk,k >, for some k in Hy}. The cone K, is the set of posi-

tive operators in £(H,H). Since |7 = 2‘sup | <Th,h>| for T in

&

Z(H,H) and since |lo|| = “k“2 £1 for k in iHo, we have |Ti| s
2 sup {|(7,9)]/ll®ll}. In other words, ¢ is fuil,

P € ¢
9 FO

EXAMPIE 5.10. Let 2 be a bownded domain in E® and let X = L(9,C)
where 1< p<w®, Let 2 be the Borel field of Z. Then L is & sep-
arable metric sPaée:with-respect to the usual metric d(E,E') = u(E A E*).
Let Zb = (B;) be a countable dense set in L which include all hyper- -
cubes with rational vertices contained in P and let Q = [a+bi € c:

.
a,b rational}. Let 5 be the set of simple functions of the form



-né',linEi where the q, are in @ and the E-i are disjoint elements of Zb
Note that % is a countable subset of Lq(E?,C) where 1/p + i/q = 1. It
is easy to check that & .s dense in Lq(@,c). An element ElqixE- of

S/ is positive real if 9 is a nonnegative real number for ;-= l,.].'.,n.

Let @ be the subset of & consisting of all the positive real elements.
lSince X* = LP(EQ,C)* = Lq(Q?,C), & C X* and the cone K, is simply

the set of nonnegative functions in Lp( 9,C)., The proof that ¢ is full

is ‘straightforward and is, therefore, left to the reader, Theorem 4,1, vhen

interpreted in this context, becomes:

COROLLARY 5.11. If p is an element of Lw(G,Lp(g,C)) such that

foGE.(g)E(' g')p(g-g')dude 1is a nonnegative function in LP( 2,0) for all

t(.) in L.(G,C), then p(g) = fa(v,g)dv where v is a weakly regular
22 W\eb), MIC8 eARS NAErE 15 8

measure on G such that v(F) is a nonnegative function in Lp( 9,c)

for all F .in Z(a), and conversely.

This corollary plays a role in the study of-\positive solutions of

certain partial differential equations.

EXAMPIE 5.12, Let H be a separable Hilbert space and let ¥ =%(H,H) be
the closed ideal of compact operators. in #£(H,H). It is well-known ([8]) |
that £(H,H)* = ;El 8 jfl where 5,’"‘ is the annihilator of % and il

is the trace class. Moreover, zl is isometrically isomorphic-with &*
and %% is isemetricall;;'r isomorphic with #£f = £(H,H). Now let H,

be a countable dense subset of the closed unit ball in H and let ¢ =

(p e Z*: (1,9) = <Tk,k> some k in H}. The cone K, is the set of

¢
positive compact cperators and @ is a countable full family.

s
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